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ABSTRACT 

In the highly versatile next-generation wireless networks, 

one of fundamental problems is how to efficiently manage 

the power consumption while preserving high quality 

performance. This paper addresses power-and-content-

aware video encoding in pervasive wireless/mobile 

environments. We formulate the problem of video quality 

maximization while preserving the battery power of the 

underlying device as an optimization problem. This is 

equivalent to minimizing both the power consumption and 

video distortion simultaneously. Based on a complexity 

scalable video coding architecture and the content aware 

adjustment, we propose a software based compression 

scheme. We call the proposed encoder active because it 

best uses its bits and power and tunes its parameters 

according accordingly. The preliminary results show that 

the encoder determines a suitable configuration according 

to the coding environment in order to save power and 

maintain well-perceived video quality. 

1. INTRODUCTION 

At the turn of the last century, we witnessed the genesis of 

the “wireless and pervasive computing era”, in which the 

focus of telecommunications and computing started to 

change, from traditional wired telephony-oriented services 

and infrastructures to data-based services, and from 

desktop workstations to hand-held, personal digital 

assistants, and smart sensors. In the near future, pervasive 

video applications are likely to provide new exciting 

services to users in a home or small office environment, 

such as mobile video conferencing, mobile video 

streaming, and sensor based video surveillance. Since the 

wireless networks are to accommodate battery-powered 

equipments with limited power supply, one fundamental 

problem is how to efficiently manage the power 

consumption while preserving well-perceived video 

presentation quality. This problem becomes even more 

critical in the highly versatile next-generation wireless 

networks.  

Research efforts have been made to address the issue 

of limited power supply on mobile devices from two 

different ways. Power-aware design techniques [3], [6], 

[7] attempt to adjust source-coding parameters to 

maximize the performance under power dissipation 

constraints. At the other extreme, low-power design 

techniques try to lower the intensive complexity of video 

encoding, which in turn reduces the power consumption, 

with or without a desired performance target [1], [9], [10]. 

However, the reported work reviewed above could not 

meet the new requirements in the coming ubiquitous 

computing environments. We argue that video 

compression technologies in futuristic pervasive 

environments will have to provide high quality of service, 

which is measured from two perspectives: First, the video 

quality at a given bit rate must be optimized. Second, it 

should be able to efficiently utilize its power supply to 

prolong the operating time. In other words, the 

compression scheme should be active, it knows how to 

best use its bits and power and tune its parameters 

according to the content it is compressing. Such a concept 

is important in emerging applications. For example, the 

sensors should remain silent to save power unless 

triggered when the content becomes active [4]. 

This paper addresses the design of a power-and-

content-aware video encoding system in the pervasive 

wireless/mobile environments. In this work, our focus is 

on techniques for efficiently utilizing the energy supply 

while preserving desirable video quality. We consider not 

only the video encoding architecture, but power and 

quality control schemes as well. We formula the power-

and-content-aware video encoding problem and discuss 

the approach to solve this problem. To utilize the power 

efficiently, we propose a power scalable video encoding 

architecture with embedded parametric algorithms and 

content aware power-efficient feedback control schemes, 

which focus on how to adjust the video distortion 

parameter as demanded by the environment. Based on the 

proposed architecture and control schemes, we develop a 

power-and-content-aware video encoding system that is 

able to prolong the battery lifetime while gaining 

desirable video quality. 
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The remainder of this paper is organized as follows. In 

Section 2, we formulate the problem of power-distortion-

optimized video coding. The constraint-oriented approach 

to solve this problem is also presented. Section 3 

introduces the complexity scalable video encoder, 

followed by the content aware adjustment strategy to 

further save the power energy. Section 4 summarizes the 

power-and-content-aware video coding system and its 

adjustment strategy. Section 5 presents the simulation 

results. Concluding remarks are provided in Section 6. 

2. POWER-DISTORTION-OPTIMIZED VIDEO 

CODING ANANYSIS 

In this section, we formalize the optimization problem of 

video coding in wireless communication environments. 

The constraint-oriented approach is applied to solve this 

problem. 

2.1. Power-distortion-optimized problem 

To formulate the research problem and present the main 

concept, we make a few assumptions about the underlying 

hardware platform: 

1. The power supply of the system is attainable through 

low-level circuit design. Whenever wanted, the current 

power supply is reported to the high-level modules. 

2. A mapping function to translate the computational 

complexity of the video coding system into corresponding 

power consumption is available, and vice visa. 

The first assumption can be worked around by using 

several off-the-shelf techniques proposed in the literature, 

such as estimating the remaining power using 

microcontroller [2], or the “state-of-charge” techniques 

[5]. With the second assumption, the power consumption 

can be tuned by the complexity parameters. Therefore, a 

complexity scalable video encoder can be eventually 

translated into an energy consumption scalable system.  

Let C(R,X), D(R,X) denote the computational 

complexity and video distortion respectively, with 

complexity parameter set X at coding bit rate R. Let  be 

the mapping function. The power consumption of the 

complexity scalable system is given by: 

P(R,X) = (C(R,X)).    (1)

In video coding applications in wireless sensor 

networks, our objective is to minimize not only the 

distortion but also the power consumption as well. Thus, 

for the scalable video encoder, the goal is to find a 

complexity parameter set that minimizes the power 

consumption and video distortion. Mathematically, we 

have: 
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where N is the space of N complexity parameters and Pc

is the current power constraint for video coding. In 

general, (2) is a multiple-objective optimization (MOO) 

problem with nonlinear constraint.  
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Fig. 1: The relations of rate-distortion-complexity and 

power-complexity. 

Generally, a more efficient algorithm has higher 

complexity, which in turn results in smaller distortion and 

higher power consumption on processing. In contrast, a 

relatively simple algorithm has lower power consumption 

at the expense of bigger distortion. Fig. 1 shows the rate-

distortion-complexity and power-complexity relations. 

The lower the coding bit rate, the larger the distortion is. 

At a given coding bit rate, higher complexity results in 

lower distortion but with higher power consumption. 

Thus, the objective functions in the above power-

distortion-optimized problem are incommensurate and in 

conflict with one another with respect to their minimum 

goals. There is no single optimal solution to (2). We need 

to search for a best tradeoff between minimal  distortion 

and minimal  power consumption to ensure a satisfactory 

design.  

2.2. Constraint oriented approach 

Various approaches have been proposed to solve a MOO 

problem by transforming it into a substitute problem. In 

this work, we apply the constraint-oriented approach. One 

objective function is used as the main objective and the 

other is treated as the secondary objective. Considering 

the fact that the human being can tolerate some video 

distortion, in power-distortion-optimized video coding, 

we can exploit this property without having to make it 

obvious or without compromising on the obvious visual 

quality in order to save power. Therefore, we treat 

minimal power consumption as the main objective 

function and minimal distortion as the secondary objective 

function. Theoretically, we can substitute the above MOO 

problem with: 
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where Du is the upper bound of video distortion that can 

be determined by the particular applications.  

It is worth to mention that the upper bound of the cost 

function influences the results of the substitute problem. 

In practice, the constraint of the upper bound is very 

subjective and it is application dependent. In order to 
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achieve the best performance, we try to obtain the 

minimum distortion while taking the power consumption 

into consideration. The upper bound distortion is achieved 

by solving the distortion-optimized problem, given by: 
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Now, to obtain the solution of problem (2), we solve 

(3) using the desirable distortion upper bound from (4). In 

general, (3) and (4) are nonlinear programming (NLP) 

problems. Both the objective and the constraint functions 

are nonlinear. Optimization methods such as Lagrange 

multiplier and penalty function methods can be used to 

solve the above optimization problems. 

3. COMPLEXITY SCALABLE AND CONTENT 

AWARE VIDEO CODING 

In the previous section, we have analyzed the power-

distortion-optimized video coding problem. In this 

scenario, to achieve flexible management and control of 

power consumption, we need to develop a video encoding 

architecture, which is fully scalable in power 

consumption. Moreover, to provide adaptability and self-

adjustment, the encoder should be content aware. 

3.1. Complexity scalability 

Typical video encoders, such as MPEG-1, MPEG-2, 

H.263, MPEG-4, and the newly developed H.264/AVC, 

employ a hybrid motion compensated DCT (discrete 

cosine transform) encoding scheme and include some 

general encoding modules such as ME (motion 

estimation), DCT/IDCT, quantization/dequantization, 

reconstruction, and entropy coding. It implies that these 

modules are the candidates for complexity management.  

3.1.1. Power consumption analysis 

Experimental results show that for most video coding 

standards, the ME and the PRECODING modules, which 

include DCT, IDCT, quantization, dequantization and 

reconstruction modules, consume most of the CPU cycles, 

while the entropy coding module only uses a relatively 

small amount of total CPU cycles, especially at low 

coding bit rates. Meanwhile, the frame rate affects the 

computational complexity dramatically. To show the 

concept of power content aware video coding, in this 

work, we use the ME module, PRECODING modules and 

the frame rate as the complexity control modules. The 

same concept can be applied to other video coding 

systems, such as the latest H.264/AVC in which the 

CABAC (context-based Adaptive Arithmetic Coding) 

entropy coding and the deblock operation also consume a 

lot of computational power and need to be controlled.  In 

the following, we denote x, y, and z the normalized 

complexity parameters of the ME module, the 

PRECODING modules and the frame rate respectively, 

given by: 

x = ME / ME
max,      y = PRE  / M  ,  z = f / fmax.,  (5) 

where M is the number of MBs in one frame, ME
max is the 

maximum value of ME , and fmax is the maximum frame 

rate.

For the ME module, the computational complexity is 

determined by the number of SAD (sum of absolute 

difference) computations (denoted by ME) associated with 

each frame. We dynamically allocate the available number 

of SAD computations throughout the frame among the 

MBs according to their motion characteristics. We refer 

this scheme as ME scalability. For the PRECODING 

modules, after motion estimation and compensation, the 

SAD values of the M MBs are sorted in an ascending 

order and the first M - PRE MBs are forced to be AZMBs 

(all zero MB) in which the PRECODING operations are 

skipped. This scheme is referred as PRE scalability.  

By introducing complexity parameters to control the 

major power demanding encoding modules, the video 

encoder is fully complexity scalable. The computational 

complexity for each coding frame is proportional to the 

number of SAD, the number of non-zero MB, and the 

coding rate. Thus, the power consumption is given by: 

C(R,x,y,z)= z(C1x+C2y+C3R),        (6) 

where C1, C2, C3 are the complexity ratios for the ME, 

PRECODING, and entropy coding respectively. They can 

be obtained either by theoretical cycle estimation or from 

simulation statistics. 

3.1.2. Rate-distortion model 

The derivation of the rate-distortion model of the system 

can be found in our previous work [6]. In this paper, 

because of its simplicity, we use the average SAD instead 

of SSD (sum of square difference) to estimate the average 

MB variance. By using similar analysis, the rate-distortion 

behavior can be modeled as: 

,),,,(),( 10 DDzyxRDXRD   (7) 

where  

)2)1()1(
2

1
())(2(8

)()1(4

/2

0

22

10

2

1

2

10

2

0

2 yRx
yayyzzD

zD . (8) 

In (8), 0, 1, and 2 are the model parameters of the ME 

module, determined by the characteristics of the video 

scene.  and a0 are the model constants of the 

PRECODING modules. 

As far as the video quality is concerned, the proposed 

scheme maintains a reasonable good performance. It is 

well known that the moving objects in the video scene 

contribute most to the overall visual quality and they often 

have relatively large SAD values after ME. In our 

schemes, the ME scalability distributes the available 

number of SAD computations among the MBs and 

allocates more SAD computations to the moving objects. 
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Moreover, the PRECODING operations are applied to the 

MBs with large SAD values in the PRE scalability. Thus, 

more computation will be allocated to the moving objects, 

which results in improved overall video quality. 

3.2. Content awareness 

When solving the power-distortion-optimized MOO 

problem, the upper bound of desirable video distortion 

plays an important role in power saving. As the upper 

bound increases, the video encoder can run at a lower 

complexity, which results in smaller power consumption 

from the power saving perspective. Therefore, we 

introduce a tolerance parameter for more power saving 

purpose. Let  be the video distortion tolerance, (3) 

becomes: 
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Since the human being can tolerate some video 

distortion, we can expect that the video quality will not 

degrade much when we slightly relax the upper bound. 

The degrading in perceived video quality is negligible 

with respect to the improvement in power saving. 

Moreover, the human eyes are more sensitive to fast 

motion than low motion. For low motion sequences, we 

can have bigger tolerance. Prediction of the motion 

characteristic enables further performance improvement in 

terms of more power energy saving. 

To make the tolerance parameter adaptive to the 

coding sequences, it is important for the video encoder to 

know the coding content. We must remember that the 

encoder has limited memory and limited computational 

power and thus we need fast, simple and yet efficient 

methods to understand and store the meaning of content. 

We have proposed a novel hierarchical framework to 

fully retrieve the subtle motion information of a video 

sequence. We showed the effectiveness of the concept on 

developing a fast motion estimation algorithm in [8]. In 

this framework, the motion intensity is determined at three 

levels: block level, frame level, and sequence level. The 

sequence level motion intensity represents the motion 

characteristic of the video sequence. Notice that the 

sequence level motion intensity is derived from the 

temporal motion distribution, and it will change when the 

coding environment changes, for example when the 

capturing switches from the static stage to the acting 

actors. In this work, we use it to classify the video 

sequences. 

According to the sequence level motion intensity, 

video sequences are classified in three classes: a) low 

motion; b) medium motion; c) high motion. Based on the 

classification, we change the tolerance parameter in (9) 

accordingly. Currently, we choose the perceptive 

tolerance as 5%, 8%, and 10% of Du for low, medium, and 

high motion sequence respectively. Subjective 

experiments show that the people will not notice the 

difference of the perceived video quality with these small 

changes. As a result, the adjustment of the tolerance 

parameter is adaptive to the content it is compressing. 

As the extra computational complexity is concerned, 

the beauty of the proposed technique is that it requires no 

extra expensive computation as the required information 

is extracted from the previously calculated motion 

vectors, which is already available after motion 

estimation.  

4. POWER-AND-CONTENT-AWARE VIDEO  

CODING  

Having formulated the research problem and introduced 

both the complexity scalability and the dynamic 

adjustment of the video distortion tolerance, now we 

propose a power and content aware video coding system 

in wireless sensor networks, minimizing the distortion and 

power consumption. 

Fig. 2 shows the architecture of the power and content 

aware video coding system. The complexity scalable 

schemes based on ME scalability and PRE scalability are 

embedded into this architecture. By choosing appropriate 

complexity parameters, the system can be tuned to the 

optimal operating state. The system analyzes the coding 

content based on the hierarchical motion intensity 

framework and adjusts the tolerance of the video 

distortion. The energy-monitoring module provides the 

current power constraint. The bit allocation module 

determines the number of bits to encode the next frame or 

group of frames according to the available bit rate.  

PPoowweerr ccoonnssttrraaiinntt

Bit Allocation 

MOO Problem 

Modeling 

Energy Monitoring

Content 

Analysis 
PRECODING 

Motion Estimation

Frame Rate 
IInnppuutt ssiiggnnaall

BBiitt rraattee

OOuuttppuutt

Fig. 2: The power and content aware encoding system. 

Using the techniques discussed above, we are able to 

achieve the minimal power consumption while preserving 

the video quality. The proposed power and content aware 

video encoding system operates as follows: 
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Step 1: Power Monitoring. The power consumption 

of the system is monitored to get the current available 

power supply. 

Step 2: Model Parameter Estimation. The system 

model parameters in (8) are estimated from the statistics 

of previous frames. 

Step 3: Optimization and Complexity Control.

Solve the MOO problem to get the complexity parameters 

(x,y,z) in a specific time period to update the system 

parameters. Set the corresponding frame rate; perform ME

complexity and PRE complexity control. 

Step 4: Dynamic Parameter Adjustment. For each 

encoding frame, after motion estimation and 

compensation, we collect the motion information to 

analyze the coding content and adjust the distortion 

tolerance parameter if needed. 

5. SIMULTATION RESULTS 

To evaluate the effectiveness of the proposed video 

encoding system, we implement it into the public domain 

H.263+ encoder. The purpose of this simulation is to 

demonstrate and validate the proposed power-distortion-

optimized scheme for video coding. To simplify the 

measurement of power consumption, we use a linear 

mapping function to translate the computational 

complexity into power consumption. For a given power 

constraint, we convert it into the corresponding 

complexity constraint through the mapping function. The 

translated complexity is then used as the input of the 

complexity scalable video encoder. In this simulation, the 

power consumption is normalized to 1. ME
max is 50 and 

fmax is 30fps. The video distortion is measured by the 

mean square error (MSE).  

For the “Foreman” QCIF sequence at 128kbps/15fps 

under different given power supply, Fig. 3 and Fig. 4 

show the complexity parameters {x,y,z} as functions of the 

percentage of power consumption without and with the 

content aware adjustment. We can see that with the 

adjustment, the encoder can lower its computational 

complexity quickly to minimize the power consumption 

and distortion. Simulation over other test video sequences 

yields similar results.  Fig. 6 illustrates the corresponding 

power consumption and video distortion with/without the 

dynamic content aware tolerance adjustment. As we can 

see, after applying the adjustment, the difference in video 

quality is negligible. However, from the power saving 

perspective, one can observe that the proposed adjustment 

consumes much less power and therefore it is more power 

efficient. From the subjective video quality point of view, 

we can see little difference in the reconstructed video 

scenes, as shown in Fig. 5. Fig. 7 and Fig. 8 give the 

results for other two different video sequences 

respectively. We can see that the power-and-content-

aware control is more power efficient with minor 

degraded video quality. 

6. CONCLUDING REMARKS 

In this paper, we proposed a new paradigm of video 

encoding: power and content aware video coding. As 

opposed to the traditional compression schemes, the 

proposed encoding scheme knows how to best use its bits 

and power in different coding environments. We showed 

that the proposed power-distortion-optimized video 

coding model can be considered as a multiple objective 

optimization problem. Based on a complexity scalable 

video coding system and the content aware adjustment, 

the encoder adjusts its configuration and the complexity 

parameters to save processing power and maintain well-

perceived video quality. Simulation results demonstrated 

that the proposed scheme is aware of the power of the 

underlying device as well as the video content, and 

achieves significant power saving within a tolerable 

distortion range. Such a feature is particularly desirable 

for video communication applications in wireless sensor 

network. 
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Fig. 3: Complexity parameters for “Foreman” QCIF 

sequence 128kbps at 15fps. 

Fig. 4: Complexity parameters after content aware 

adjustment for “Foreman” QCIF sequence 128kbps at 

15fps.  

(b) (a) 

Fig. 5: Comparisons of video quality: (a) original result; 

(b) optimized result. 

Fig. 6: Power consumption and distortion comparisons for 

“Foreman” QCIF sequence 128kbps at 15fps. 

Fig. 7: Power consumption and distortion comparisons for 

“Carphone” QCIF sequence 128kbps at 15fps. 

Fig. 8: Power consumption and distortion comparisons for 

“Stefan” QCIF sequence 64kbps at 15fps. 
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